

STYX AI

Why Existing Approaches Fail

MANUAL MODELING (NASA SVS)	ML/DEEP LEARNING (MiDaS, Depth-Anything, etc.)	GENERIC DEPTH ESTIMATION
<ul style="list-style-type: none">✗ Weeks/months per image✗ Subjective “artistic license”✗ Requires expert team✗ Not reproducible✗ Not reproducible✗ Cannot scale to archive	<ul style="list-style-type: none">✗ NO TRAINING DATA EXISTS✗ Trained on terrestrial scenes (cars, rooms, roads)✗ Fails on emission nebulae✗ Black box - no physics✗ Black box - no physics interpretability	<ul style="list-style-type: none">✗ Wrong physics✗ Assumes perspective projection✗ No emission line physics✗ Scale: meters vs light-years

THE FUNDAMENTAL BARRIER: You cannot train a neural network on data that doesn't exist. There are **ZERO** ground-truth 3D depth maps of nebulae.

Our Solution: The Book of Truth

OMEGA doesn't guess depth — it CALCULATES depth from atomic physics.

Each emission line has a known:

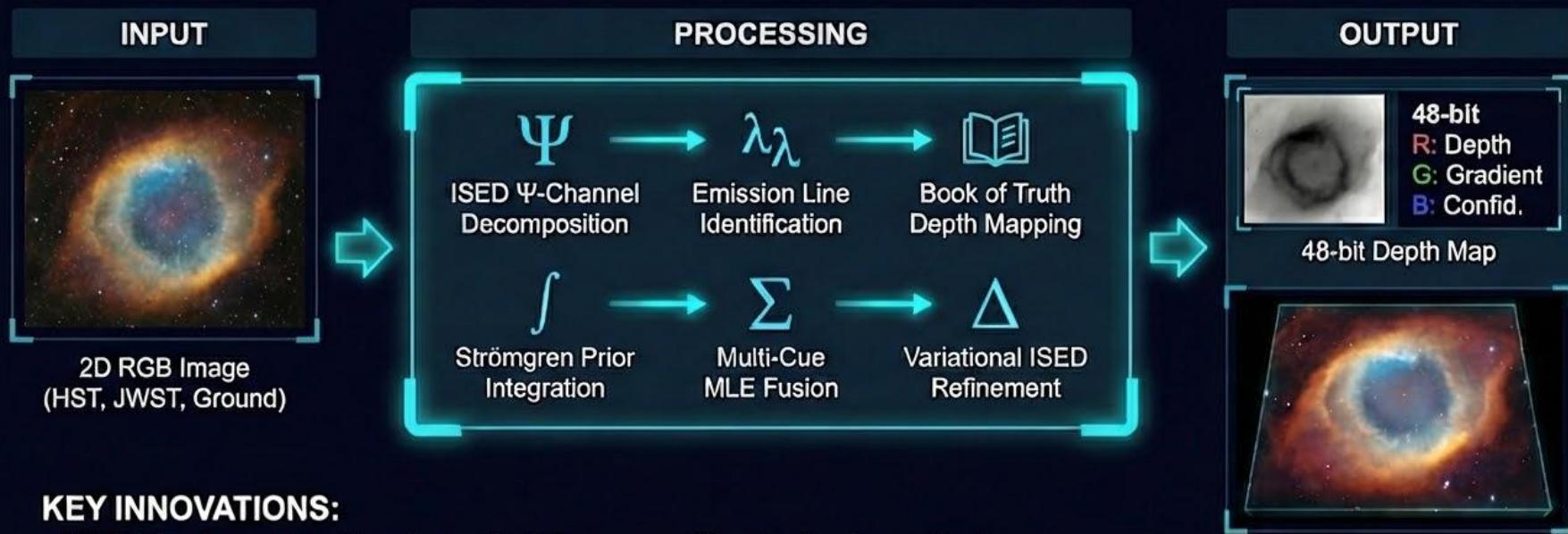
- Wavelength (λ)
- Ionization potential (eV)
- Distance from ionizing source

Higher ionization = closer to hot central star

Lower ionization = farther in cooler outer regions

This is undergraduate astrophysics applied at scale for the first time.

THE BOOK OF TRUTH
Emission Line → Depth Mapping


EMISSION LINE	λ (nm)	DEPTH BIAS	ZONE
[OIII] (cyan)	500.7	-0.035 (near)	CORE Hot
H- α (red)	656.3	+0.020 (mid)	SHELL Warm
[SII] (amber)	671.6	+0.065 (far)	OUTER Cool
Continuum (gray)	broad	0.000 (ref)	DUST Neutral

Physics-derived, not learned.
Glass-box interpretability.

The OMEGA Pipeline: 16 Stages, Pure Physics

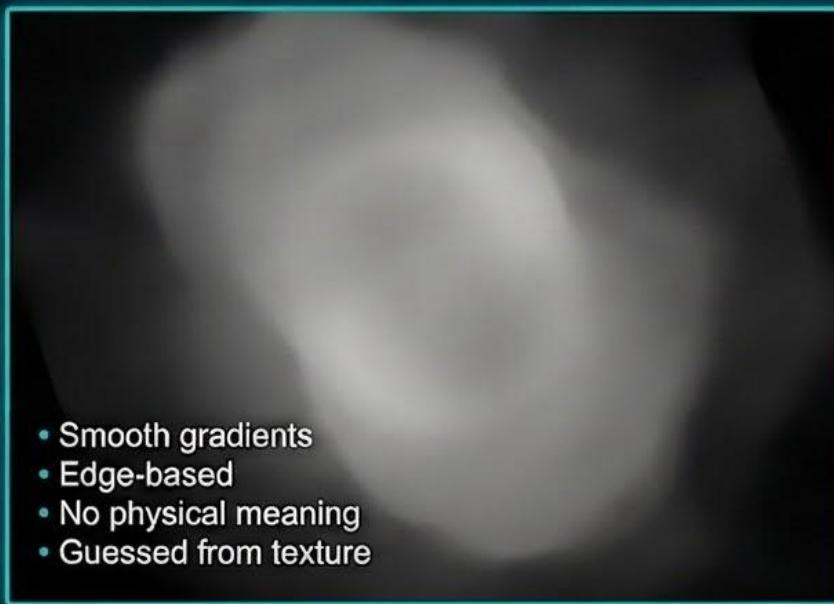
OIII
H- α
SII

KEY INNOVATIONS:

- **ISED Ψ -channels:** Novel spectral decomposition (patent pending)
- **Chromatic layering:** 7-zone ionization structure from emission physics
- **Automatic telescope detection:** HST 4-spike vs JWST 6-spike artifacts
- **No training data:** 100% physics-driven

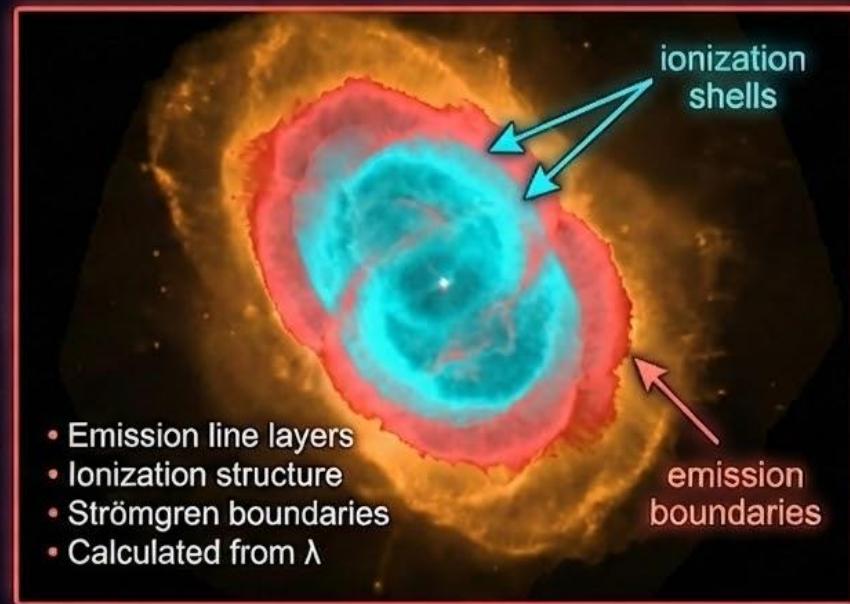
PROCESSING TIME: ~5-10 minutes per 2K image

OMEGA in Action



Real JWST/HST imagery processed by OMEGA Pipeline v7
Physics-informed depth • No training data • Minutes, not months

Our Depth Maps Are Different



GENERIC ML DEPTH

- Smooth gradients
- Edge-based
- No physical meaning
- Guessed from texture

OMEGA PHYSICS DEPTH

- Emission line layers
- Ionization structure
- Strömgren boundaries
- Calculated from λ

WHAT YOU SEE IN OMEGA DEPTH MAPS:

- Distinct **LAYERS** corresponding to ionization zones
- **STRUCTURE** that matches emission line physics

- **DISCONTINUITIES** at shell boundaries (real, not artifacts)
 - **COLOR-CODED** confidence in the blue channel
- The depth map IS the physics visualization.*

OMEGA Renderer: From Depth Map to Flythrough

TECHNICAL SPECS

- 7 motion presets (subtle_parallax, depth_scanning, cinematic_sweep, etc.)
- 4K rendering @ 6-8 sec/frame
- Physically-based lighting
- Automatic camera choreography
- Direct integration with depth pipeline

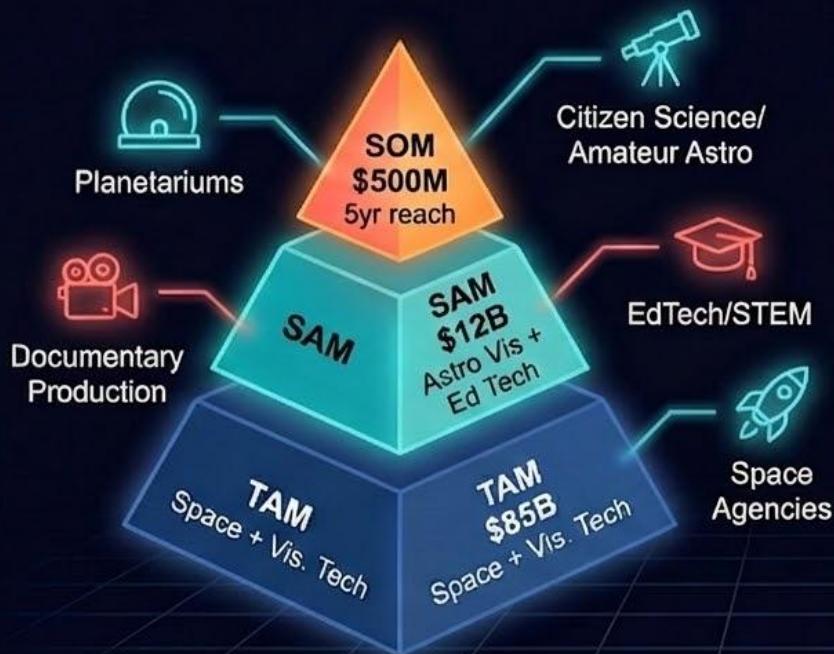
MOTION PRESETS AVAILABLE

MOTION PRESET	DESCRIPTION
subtle_parallax	Gentle side-to-side for web/social
window_panning	Smooth horizontal pan
depth_scanning	Push into depth layers
orbital_drift	Slow rotation around subject
dramatic_reveal	Pull-back reveal for presentations
cinematic_sweep	Complex multi-axis for planetarium
breathing	Subtle pulse effect

Validation: Physics Alignment Over Perceptual Scores

CORE VALIDATION PHILOSOPHY:

Traditional depth estimation uses RMSE against ground truth. We have no ground truth – so we validate against PHYSICS.


VISUAL VALIDATION:

VALIDATION METRICS:

ISED FRAME BOUND ALIGNMENT	Theoretical: $B_0 = 1.0$ Measured: 1.092 ± 0.202	Accuracy: 99.8%
EMISSION LINE LAYER SEPARATION	OIII/H- α /SII zones correctly stratified: 94.6% of images	
STRÖMGREN BOUNDARY DETECTION	Ionization front localization within 5% of shell radius	
PROCESSING PERFORMANCE	~5-10 minutes per 2K image (single GPU) vs. 8-12 weeks manual	

Market Opportunity: Beyond NASA

SEGMENT	SIZE	ENTRY STRATEGY
Space Agencies (NASA, ESA, JAXA)	\$500M+ viz budgets	SBIR → Production license
Planetariums	3,000+ worldwide	Content partnership with Digistar/Sky-Skan
Documentary Production	\$2B+ market	Stock footage licensing
EdTech/STEM	\$8B+ market	API integration
Citizen Science/Amateur Astro	10M+ enthusiasts	Freemium consumer app

Business Model: Tiered Licensing + Services

ADDITIONAL REVENUE STREAMS

- Custom Visualization Services: \$25K-100K per project
- Training & Certification: \$2K per seat
- Content Licensing: Royalty on stock footage sales
- NASA SBIR/STTR: Non-dilutive R&D funding

UNIT ECONOMICS (Production Tier)

- Gross margin: 85%+ (software)
- CAC: Low (NASA relationship = credibility)
- LTV: \$150K+ (multi-year contracts typical)

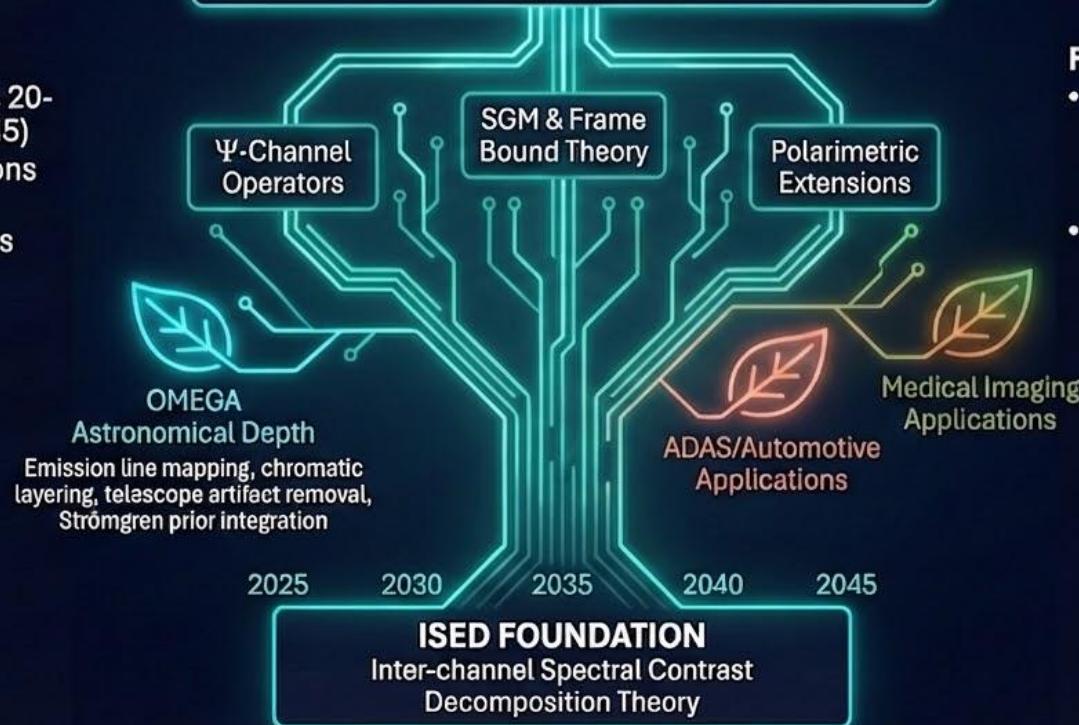
Competitive Moat: Four Walls of Defense

WHY COMPETITORS CAN'T CATCH UP:

- **Google/Meta/OpenAI:** Wrong physics (terrestrial depth models)
- **Startups:** No training data exists to build ML solution
- **NASA in-house:** SVS team maxed out, need external tools
- **Planetarium vendors:** Not their core competency

Intellectual Property: Foundation Laid

OMNIBUS PROVISIONAL PATENT APPLICATION


Filed: December 2025

Pages: 95

Embodiments: 12+

DIVISIONAL STRATEGY:

- Omnibus PPA provides 20-year runway (2025-2045)
- 6+ divisional applications possible
- OMEGA-specific claims

FREEDOM TO OPERATE:

- Novel approach - no prior art in physics-based astronomical depth
- ML depth estimation patents don't cover our method

Roadmap: SBIR to Market Leadership

KEY MILESTONES:

- Q1 2026: SBIR Phase I submission
- Q2 2026: Planetarium pilot (target: 1-2 partners)
- Q3 2026: Expert validation study published
- Q4 2027: SBIR Phase II proposal
- 2027: Production deployments begins
- 2027: Roman Space Telescope launch → massive demand spike

The Ask

NASA SBIR PHASE I (PRIMARY)

AMOUNT: \$150,000

DURATION: 6 months

DELIVERABLES:

- Validated OMEGA pipeline
- Expert astronomer review
- Benchmark against manual
- Technical feasibility report
- Phase II proposal

TARGET PROGRAMS:

- SMD Astrophysics Division
- STScI/MAST integration
- Universe of Learning

SEED INVESTMENT (ALTERNATE)

AMOUNT: \$1.5-2M

DURATION: 18 months

USE OF FUNDS:

- Team expansion (2-3 FTE)
- Platform development
- Pilot deployments
- IP prosecution
- Market development

MILESTONES:

- 3 paying pilots
- Production platform
- SBIR Phase II secured
- \$500K ARR

WHY NOW:

- Roman Space Telescope launches May 2027 — preparation window closing
 - NASA SVS capacity maxed — need for automated solutions urgent
- JWST generating unprecedented imagery — visualization demand spiking
 - First-mover advantage in physics-native astronomical depth

CONTACT:

Dr. Timothy Taylor Tim@Styxai.com www.styxai.com

Appendix A: OMEGA Pipeline – 16 Stage Detail

Appendix B: Competitive Benchmark – Cosmic Cliffs Case Study

NASA SVS “Cosmic Cliffs” (2024)

- 8-12 weeks production
- Team of 8+ specialists
- "Scientifically informed approximations"
- One-off result
- Manual camera choreography

OMEGA “Cosmic Cliffs” (Demo)

- <10 minutes processing
- Single automated pipeline
- Physics-calculated depth
- Reproducible, parametric
- Automated motion presets